
CropCircles: Topology Sensitive Visualization of OWL
Class Hierarchies

Taowei David Wang1, Bijan Parsia2

1 Department of Computer Science,
University of Maryland, College Park, MD 20742, USA,

{tw7}@cs.umd.edu
2 The University of Manchester, UK

bparsia@cs.man.ac.uk

Abstract. OWL ontologies present many interesting visualization challenges.
Here we present CropCircles, a technique designed to view the class hierarchies
in ontologies as trees. We place special emphasis on topology understanding
when designing the tool. We drew inspiration from treemaps, but made substan-
tial changes in the representation and layout. Most notably, the spacefillingness
of treemap is relaxed in exchange for visual clarity. We outline the problem scape
of visualizing ontology hierarchies, note the requirements that go into the de-
sign of the tool, and discuss the interface and implementation. Finally, through a
controlled experiment involving tasks common to understanding ontologies, we
show the benefits of our design.

1 Introduction

The vision of the Semantic Web is a meta-data rich Web where presently human-
readable content will have machine-understandable semantics. The Web Ontology Lan-
guage (OWL) is a W3C recommendation that allows modelers to use its expressive
formalism to define various logical concepts and relations3. A content-creator can use
appropriate ontologies to, for example, annotate existing Web content. The enriched
content can then be consumed by machines to assist humans in various tasks.

However, expressive ontologies can be difficult to understand. Content-creators of-
ten need to locate and inspect concepts of interest in detail to determine whether specific
concepts are suitable for their use. The hierarchical structure of the concepts in an on-
tology can reveal a great deal about how these concepts are organized and how they are
intended to be used. Effective presentation of the hierarchies can be a big win for the
users.

In an OWL ontology, if we ignoreowl:Thing as the root of the tree, and view the
structure starting at the second level, an OWL ontology hierarchy can take the form of
list(s) , tree(s), multitrees [9], or a direct acyclic graph. One may believe that cycles of
subclasses can occur. However, since the classes define sets, a cycle of subsets indicate
that all classes in the cycle are equivalent. In OWL ontology editors such as Protéǵe
[17] or SWOOP [14] the class trees are shown as standard tree widgets. Although the

3 In this paper, we will use the term concept and class interchangeably.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
2006 2. REPORT TYPE

3. DATES COVERED
 00-00-2006 to 00-00-2006

4. TITLE AND SUBTITLE
CropCircles: Topology Sensitive Visualization of OWL Class Hierarchies

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Maryland,Department of Computer Science ,College
Park,MD,20742

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

14

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

2

widget is adequate for browsing node labels, it gives no additional information on how
bushy or how deep a subtree is without further expanding it.

We present CropCircles, a technique to enhance user’s ability to view the class
structure at a glance. CropCircles is a tree visualizer, and like a treemap [13], CropCir-
cles uses containment to represent the parent-child relationship. However, CropCircles
sacrifices the space-fillingness for better visual clarity, enhancing understanding of the
topology. This paper presents the design goals of CropCircles, the interface, and a vali-
dation of our design through a controlled experiment with treemap and SpaceTree.

2 Related Work

There are a number of ontology visualization tools available. Most of them are deriv-
atives of tree visualizers. There are two major types of representations of trees. One is
the traditional node-link diagram. The other is using geometric containment. Trees rep-
resented by node-link diagrams typically suffer from inefficient use of space. The root
of the tree is usually situated where there is a lot of unused space. On the other hand,
the nodes in the deep part of the tree have little room among themselves.

To remedy the inefficient use of space, hyperbolic tree viewer [15] places the hierar-
chy on a hyperbolic plane, and then maps the plane onto a circular region. User’s focus
on the tree will be given more space, accentuating the structures around it. The layout
of the tree smoothly animates as the user clicks and drags at different parts of the tree.
OntoRama [8] uses a hyperbolic approach to view RDF graphs. OntoRama can visu-
alize RDF serialization of an OWL ontology, which is more verbose and consequently
makes it more difficult to understand the hierarchy. One problem with the hyperbolic
representation is that the constant relayout makes it difficult to maintain a mental map
of where the nodes are or what the structure is.

SpaceTree [18] is a tree browser combined with a rich set of interactions to help
users explore the tree. The dynamic rescaling of branches to fit the available screen
space minimizes user interaction. Preview icons and miniature trees are used to give
users a sense of the depth, breadth, and size of the subtrees. The smooth 3-stage anima-
tion to expand/contract subtrees help keeping the context without overwhelming users.
Though it is possible to view 2 subtrees simultaneously using SpaceTree, it requires
some careful user interaction. OntoTrack [16] builds on SpaceTree to browse and edit
the ontology. It augments SpaceTree to use cross links to represent multiple inheri-
tance. The implementation of the cross links, however, is awkward. Sharp bends of the
links occur. Link occlusion by node labels often arise, and no optimization is done to
minimize edge crossings.

Instead of using edges to represent the parent-child relationship in trees, a second
type of tree representation uses geometric containment. Treemap [13] is a spacefill-
ing representation of a tree using nested rectangles. The leaf nodes can use color and
size to indicate their associated attributes. Labels for the nodes are displayed in place
when there is enough room. The original treemap uses the slice-and-dice algorithm
[13], which often produces elongated rectangles that are difficult to see and interact
with. Squarified treemaps [5] and ordered treemaps [4] have been proposed to explic-
itly maintain good aspect ratio of the rectangles. Although treemaps were first applied

3

to visualize directory structures, they have been widely applied to other areas, among
them, stock market4, news5, sports reporting [12], microarray analysis using hierar-
chies from the gene ontology [1], and digital photo management system [3]. As widely
as used treemaps are, they are most effective when the main focus is to understand
the attribute distributions of the leaf nodes. Topological understanding is not one of its
strengths.

Jambalaya [19] uses nested rectangles to show the hierarchy of classes and in-
stances. It has a treemap view option. Different relations among the classes and in-
stances are represented via edges between them. Users can filter both node and edge
types. The visualization typically can show only 3 levels deep without serious user in-
tervention.

There have been attempts to use geometric shapes other than rectangles to imple-
ment treemaps. Voronoi treemaps [2] use iterative relaxation of Voronoi tesselation to
compute a layout of arbitrary polygons to fill a screenspace. The approach aims to
address the high aspect ratio problem in treemaps and to better delineate boundaries
among polygons. Kai Wetzel created a circular treemap to visualize Linux directories6.
There is also recent work focusing on circle packing in directory viewing [20]. Though
these algorithms are used to pack in the circles as tight as possible, nested circles can
obviously not fill a space. However, this extra space makes it easier to distinguish the
different levels of a tree.

3 Design and Implementation

Given an ontology, users typically want to find out whether some classes in the ontology
is suitable for their use. They are interested in how many subclasses a paticular class has,
as these subclasses are more specific than their parents and are differentiated from their
siblings. In an unknown ontology, by exploring the larger branches of the hierarchy,
a user is more likely to find out what the ontology is about. Likewise, in an inferred
tree, one can tell that classes that lack subclasses and are children ofowl:Thing
are often undermodeled. By comparing the structural differences between the told the
inferred class hierarchies, a user can also tell whether an ontology is mostly asserted, or
is intricately modeled. An effective visualization should allow users to comparatively
distinguish depth, bushiness, and size of subtrees.

The subsumption hierarchy in OWL is a directed graph, and to visualize it as a
graph is natural and has the advantage that we do not need to duplicate nodes that have
multiple parents. However, this often creates nonplanar graphs where intersecting edges
cannot be avoided. Cross links are not desirable for both aesthetic and usability issues.
As a result many graph drawing approaches name minimal edge-crossing as a require-
ment [6] [11]. Matrix representations of graphs represent edges implicitly, avoiding
messy edge crossings and occlusions. But it is difficult to, for example, find how many
subclasses a conceptC has. This is a natural task in a tree, however. A user only needs
to explore the subtree rooted atC. In a tree structure, users can better recoginze the

4 http://www.smartmoney.com/marketmap/
5 http://www.marumushi.com/apps/newsmap/newsmap.cfm
6 http://lip.sourceforge.net/ctreemap.html

4

bushiness at a certain node and whether a branch can lead to a deep node. By imposing
tree structures onto a graph, we believe this will enable users to perform these tasks
better.

Treemap’s ability to show multiple branches and multiple levels simultaneously is
attractive. It allows users to compare depth, bushiness, and size of several subtrees at
once. However, despite adjustable border size and depth filters, it is still difficult to
gather topological information. In particular, treemaps emphasize on visualizing leaf
node attributes. The intermediate nodes are deemphasized. In visualizing ontology hi-
erarchies, however, intermediate nodes are as important as leaf nodes. Scanning for a
node’s children is also problem, as they are scattered in 2D space, and labels can be
cropped or completely hidden.

Our visualization design requirements are aimed to address the problems and tasks
outlined above. They are summarized below.

– Topology Overview In supporting the tasks to discern size, depth, and bushiness,
we aim to show multiple subtrees and multiple levels at once in a tree structure. This
should allow users to better comparatively gauge the subtrees. But unlike treemaps,
we sacrifice spacefillingness to increase clarity.

– Linearity in Node Reading At any level of the tree, the user should be able to
quickly read the labels of the children. Node-link representation of trees usually
have sibling nodes arranged closely on a line or a curve. Reading and counting
node labels in such situations is easy.

– Node Duplication Detection Because we are imposing a graph structure onto a
graph, we need to support users to detect duplications due to multiple inheritance.

– Aesthetics Though not the most important requirement, we feel that a visually
pleasing presentation would encourage users to look at the data and gain insights
from the visualization.

3.1 Layout

In CropCircles circles represent nodes in a tree. Every child circle is nested inside its
parent circle. Every circle’s diameter is proportional to the size of the subtree rooted at
that node. The smallest subtrees (the leaf nodes) have the minimum size of all circles.
For every node, CropCircles sorts its children in descending order according to their
subtree sizes, and then lays them out in that order. The sorting creates a sense of order
in an otherwise unorderd 2D space within a circle. The larger nodes occupy more space,
showing more importance, and encourage users to explore them first.

Depending on the size distribution of the children nodes, we employ 4 different
layout strategies. These layout strategies are aimed to allow users to quickly gauge how
the subtree sizes are distributed. To recognize whether a node has subtrees of equal
size, a single subtree, or a predominant subtree can aide users’ decisions on whether
to explore such node further. When there is only one single child, the child node is
concentrically placed inside its parent. When there are a number of equal sized children
nodes, they are laid out on a concentric circle inside the parent, uniformly distributed.
When there are no dominant children (a subtree that has more than 33% of the total
number of descendents the parent subtree contains), all children are laid out along the

5

lower arc of its parent, the largest node first. When at least one dominant child is present,
smaller children are laid out on an arc, equidistant from the center of the largest child.
The layout for dominant child introduces a deviation from the philosophy of the other 3
layouts. In this case, the arc the layout relies on does not depend on the parent node. It
brings focus to the dominant child, and gives users a visual cue that something different
is there. The four layout strategies can be seen in Figure 17.

In addition to the layout strategies, every child is rotated by an amount , propor-
tional to its size-sorted rank, with respect to the either the center of of the parent, or the
center of its largest child. This lessens the regularity of the layout, and the result is more
visually pleasing. Because of these intricately nested circles, we name our tool Crop-
Circles. We believe the sorting of child nodes and the regularity in layout can facilitate
user’s understanding of the structures where the current circle-packing approaches such
as Kai Wetzel’s circular treepmaps and [20] are not placing emphasis on.

Fig. 1.From left to right, the figure shows the different layout strategies: single-child, all-children-
of-equal-size, dominant-child, and no-dominant-child.

3.2 Interface

The interface for CropCircles has two major components: a visualization area to the
right, and a panel serving both nagivation needs and detailed views to the left (see Figure
2). The visualization area shows the tree as nested circles. Users can left click on any
circle to highlight that subtree in white. Each double click on a circle will pan and fit that
subtree to the screen. All the zooming and panning are done in one step (no animation).
Mousing over any circle will show its statistics: label of the node, depth at which it is
rooted, and how large its subtree is. To effectively support multiple inheritance, when
users select a circle, all other duplicated circles will be highlighted, making it easy to
spot all the parents of the selected node.

For each selected node, all its immediate children are displayed on a list to the
left of the visualization. Above the list, user can utilize the navigation buttons to move
forward and backward to previously selected nodes. If multiple ontologies are being
visualized, users can select to view any subset of them in the ontology list on top of the

7 We note that the colors in the screen shots have been altered to ensure readability. For unaltered
images, please see http://www.mindswap.org/˜tw7/work/iswc2006/CropCircles/

6

Fig. 2. This figure on the left shows the CropCircles interface. The visualization on shows the
inferredclass tree of galen. Note that the class ”NAMEDInternalBodyPart” is multiply inherited
in two places (hence the highlights). The left panel shows the children of the class. Alternatively,
user can select the Concise Format tab to see the definition and inferred facts about the class, as
shown in the right figure.

nagivation buttons. Instead of seeing a list of immediate children, users may elect to see
its definitions by click on the tab ”Concise Format”. Finally, there is a search box for
name lookup. The current implementation of CropCircles uses the JUNG8 framwork,
and is downloadable as part of the open source OWL ontology editor SWOOP9.

4 Empirical Evaluation

4.1 Choice of Tools

In the controlled experiemnt, we chose to compare the following 3 tree visualizers:
CropCircles, treemap (Treemap 4.110), and SpaceTree (SpaceTree 1.611). Although
treemaps are best when used to visualize node attributes at the leaf level, because much
of our design decision was derived from treemap, we want to show that CropCircles
is an improvement over treemaps on topological tasks. On the other hand, SpaceTree
has been shown to be effective in conveying the structure of trees well in several tasks,

8 http://jung.sourceforge.net/
9 http://www.mindswap.org/2004/SWOOP/

10 from http://www.cs.umd.edu/hcil/treemap/
11 from http://www.cs.umd.edu/hcil/spacetree/

7

though not without its own weaknesses [18]. We show that CropCircles is effective
in conveying topological information and addresses the weaknesses of the other two
tools. We used the default settings on Treemaps in our experiment. SpaceTree uses
a left-to-right layout and triangle and miniature trees as visual cues. Figure 3 shows
visualizations of the experimental data using the three tools.

4.2 Choice of Tasks

For each tool, we ask users to perform the following tasks.

– Find Unknown Node Users are asked to find a node in the hierarchy. They are
not allowed to use search boxes. Users must rely on the visual representation of the
trees and labels to find the node, and have up to 2 minutes to complete the task. If
they are unable to finish the task within the time limit, the experiment administrator
shows the user the steps to find the node. Users are asked to perform this task twice,
each time with a different target node.

– Return to Previously Visited Node Users are asked to locate a node that they
found in a previous node-finding task. Users are asked to click on the node to show
that they have found it. They can rely on their memory of the location of the node
or any nagivational interfaces the tool supports. Users have up to 2 minutes to com-
plete the task.

– Comparison of Subtrees Users are asked to compare and contrast two subtrees.
The experiment administrator brings the tool to a state where both subtrees are
visible. Users are then free to explore the subtrees to state any structural similarities
and differences of the two subtrees. Users are told to ignore label similarities, but
are welcome to use them as references.

– Find the Bushiest Child NodeGiven a node, users are asked to identify which one
of its child nodes has the most immediate children. Users have up to 2 minutes to
complete the task.

– Find the Largest SubtreeGiven a node, users are asked to identify which one of
its child nodes has the most descendents. Users have up to 2 minutes to complete
the task. The node given to the participants has 18 immediate children, and total of
207 descendents.

– Find a Deepest NodeGiven a subtree, users are asked to find a node that resides at
the deepest level they can find. A time limit of 3 minutes is enforced.

– Find 3 Nodes with at Least 10 ChildrenUsers are instructed to find 3 nodes that
have at least 10 immediate descendents. Time limit is 2 minutes.

– Find 3 Top-level Nodes that Root a subtree of Depth of at Least 5Users are
asked to find 3 top level nodes (children ofOWL:Thing) that root a subtree with
depth of at least 5. Two minute limit is enforced.

Node-finding is an elementary task for any tree visualizer. When ontology users
wish to use an ontology that is potentially suitable for their purposes, they must locate
the class(es) they are interested in in order to examine if the modeling of these classes
are compatible with the users’ intended usage.

Ontology browsing often requires successive browsing of semantically related con-
cepts. However, these related concepts often are not closely related in the hierarchy.

8

That is, these concepts may not have an ancestor-descendent or even a sibling relation-
ship. One concept may be related to multiple concepts semantically. Users may need
to adopt a breadth-first browsing pattern on the semantic relations to gain understand-
ing of the specific concept semantically. A tool that allows users to quickly return to
previously visited nodes would be favored.

Structural similarities are not uncommon in ontologies. The obvious case are the
concepts that have multiple parents. These subtrees would be duplicated within an on-
tology. However, when an ontology imports another, and builds on top of the imported
ontology, subtrees of different parents may no longer be the same. To be able to visu-
ally recognize similar trees is a plus. For example, the Federal Enterprise Architecture
Reference Model (FEARMO) ontology12 makes heavy reuse of imported concepts. By
inspecting the structure alone and knowing where subtrees are reused, one can quickly
grasp the modeling patterns.

The last five tasks have to do with topology of the tree. Tree topology in an ontol-
ogy conveys information about where in the ontology the most well-defined parts are.
The number of immediate children of a node indicate how fine-grained this particular
concept is being modeled. The depth of a subtree indicates how specific a particular
concept is modeled. Of course, the size of the subtree is a reflection of the above two
measures.

4.3 Choice of Data

We use an older version of NASA SWEET JPL ontologies as our data13. Since the
ontologies import one another, we stitched them together into a single file without
changing the semantics. There are a total of 1537 defined classes. Adding the dupli-
cate subtrees due to multiple inheritance creates a tree of 2104 nodes. We use this told
tree for the first 3 tasks we described above. We then turn on an OWL reasoner to obtain
the inferred tree, which contains 2007 total nodes. These two trees have sufficiently dif-
ferent topology. The told tree has a maximum depth of 11, average depth of leaf nodes
4.2, maximum branching factor 154, average branching factor of non-leaf nodes 3.9,
and 103 nodes that have multiple inheritance. The inferred tree has the following, re-
spectively, statistics: 12, 5.1, 74, 3.7, 125. We use the inferred tree to carry out the
experiments on the topological tasks to prevent the effect of user learning the topology
of the tree performing the first 3 tasks.

To mitigate users’ possible prior familiarity with the ontology and the domain knowl-
edge, we obfuscate the ontology by renaming the classes. The class are renamed in a
pre-order traversal fashion. Given a starting integerN , the root of a subtree is given
the name ”CN ”. Then a pre-order traversal takes place to rename all its descendents
recursively by incrementingN everytime a new node is encountered. We keep track of
which number has been assigned to which node, so when duplicate nodes are encoun-
terd multiples in the traversal they can be assigned the same names. We create 3 pairs
of the told tree and the inferred tree, every pair using a different startingN . We then

12 http://www.topquadrant.com/owl/2004/11/fea/FEA.owl
13 http://www.mindswap.org/ontologies/debug-sweet-jpl.owl. The most current version can be

obtained via http://sweet.jpl.nasa.gov/ontology/

9

cross-pair a told tree and an inferred tree so that each tree in every pair has different
startingN . One pair is used for one tool in the experiment. We explain how the nodes
are numbered prior to the experiment so users can search for nodes they have not seen
before.

4.4 Experimental Setup

There are 18 subjects in our study. They are computer science graduate or undergradu-
ate students or researchers who are familiar with tree structures. We give an overview to
each subject on what they will be asked to do, and begin 3 sessions of training and ex-
perimentation phases, one session per tool. In each session, we spend up to 10 minutes
training the subject on how to use the specific tool in that session. We make sure the
subject understands the visual representation of the tree, whatever visual cues are avail-
able in the specific tool, ways to nagivate the tree, and how to obtain vital tree topology
statistics (depth of a node, size of a subtree, etc.). We show users how to use features in
the tools to help them accomplish the tasks effectively. In particular, we train users to
use the depth filter in treemap, and to use bookmarks in SpaceTree. After the directed
instructions are done, the user is allowed to freely experiment with the tool. When a
user is comfortable with the tool, or when the 10 minute time is up, we proceed to the
experimental phase. After each experimental phase, we ask users to fill out a section
of a survey pertaining to the tool they just used with respect to the tasks they just per-
formed. After the experiment, users are asked to complete the survey for other feedback
and background information.

The order in which the tools are presented to the users are counterbalanced to elim-
inate learning effects and fatigue. All experiments are done on an IBM T41 laptop with
1.4GHz CPU 1.28GB of RAM running Windows XP. Each tool occupies 1240x740
pixels. The entire experiment does not exceed 75 minutes.

5 Results

We analyze each task separately. For each continuous dependent variable (e.g. time), we
use a repeated measures one-way ANOVA. We check for the sphericity condition and
then perform a modifiedF test in the ANOVA as suggested by [10]. This means that we
first conduct an unmodifed univariateF test, and if the test is not significant, we accept
the null hypothesis that the means obtained across the three tools are not different. If this
first test is significant, we then lower the degrees of freedom and perform a conservative
F test, which relies on, in our case,F1,17 distribution. Tukey’s HSD method is used for
multiple comparisons when spheiricity is not grossly violated. Otherwise we use Bon-
ferroni correction on subsequent pairwise two-tailed t-tests. We usep = 0.05 for the
ANOVA and the post hoc procedures (note that the Bonferroni correction will lowerp
to ensure the overall significance is0.05). For binomial variables (e.g. success/failure),
we use Cochran-Mantel-Haenzsel general association statistic (which followsχ2 dis-
tribution) to test whether the response profiles of the three tools are different [7]. We
then use Bonferroni correction on the pairwise comparisons. Here we also usep = 0.05
for the CMH test and the pairwise comparisons. In the following sections, we present

10

Fig. 3.The initial view of the inferred tree in the study by the three tools (top-down): CropCircles,
Treemap 4.11, and SpaceTree 1.6.

11

the experimental results, observations, and offers possible explanation to the observed
results. The results are summarized in Table 1. Unless otherwise specified, units used
on performance is time in seconds.

Task C T S Statistic significance
mean SD mean SD mean SD

Node Finding 1 87.6 34.2477.87 37.9 30.4013.58F1,17 = 20.53∗ S> C, S> T
Node Finding 2 62.31 34.0 63.42 31.6 28.9113.13F1,17 = 15.85∗ S> C, S> T

Return to Visited Node 19.94 7.64 59.7541.2317.44 5.34 F1,17 = 15.86∗ C > T, S> T
Subtree Compare (succ. rate) 1.0 0.0 0.78 0.43 0.83 0.38 χ2

2 = 5.2 none
Bushiest Child 27.4219.0455.4531.7012.15 7.88 F1,17 = 19.08∗ C > T, S> T

Largest Subtree 26.0916.2539.2317.8834.6617.54 F2,34 = 2.97 none
A Deepest Node (error rate) 0.22 0.43 0.67 0.49 0.33 0.49 χ2

2 = 6.93+ C > T
3 Nodes with≥ 10 Children 19.56 6.14 26.1423.3953.5927.27F1,17 = 15.26∗ C > S, T> S

3 Subtrees of Depth≥ 5 47.90 20.4 54.0927.8150.8411.86 F2,34 = 0.40 none
Table 1. Results of the experiments. Each cell shows the recorded mean and the standard devi-
ation of the dependent variable for a particular task and a particular tool. The statistic column
shows the relevant statistics used and the level of significance obtained (if the test is significant).
∗ denotesp < 0.01,+ denotesp < 0.05. The last column shows only the statistically signifi-
cant findings of the three tools: (C)ropcircles, (T)reemap, (S)paceTree. X> Y indicates that X
outperforms Y with statistical significance.

5.1 Navigational Tasks

– (First Time Node-Finding) SpaceTree performed significantly better than Crop-
Circles and treemap. However, there was no statistically significant difference be-
tween CropCircles and Treemap. Seven participants used the depth slider in Treemap
to help reduce visual clutter. Participants also used the fact that they can read labels
at multiple levels of tree simultaneously to their advantage in Treemap. Participands
had problems finding nodes in CropCircles. The list of size-sorted labels is difficult
to digest, particularly at the root level, where there are 154 branches to explore.

– (Return to Visited Node) In returning to a previously visited node, both CropCir-
cles and SpaceTree outperformed Treemap with statistical significance. There was
no significant difference between CropCircles and SpaceTree. Treemap’s represen-
tation does not seem to help users much in this task. In fact, the relayout to achieve
space-fillingness at each zoom disorients users even though they have already done
the same traversal once before. Though CropCircle users can use history to navi-
gate backwards, only 3 participants used it. Most participants used their memory
on the traversal process on the class list to accomplish this task. Participants asso-
ciated well with the steps they had taken to find the node using SpaceTree. Many
remembered where to look at each stage of tree expansion.

12

5.2 Topology Recognition Tasks

– (Subtree Comparison)Although all participants were successful in making the
observation using CropCircles, and some portions of particiants failed in Treemap
and SpaceTree, the differences among the tools are not statistically significant.

– (Finding the Child Node that has the Most Immediate Children) CropCir-
cles and SpaceTree allowed users to complete this task significantly faster than
Treemap. But there is no statistical sigificance between CropCircles and Space-
Tree. When the target node was expanded in SpaceTree, it fully expanded both its
child and its grand child level, but not its great-grand child level. This is exactly the
right amount of information users needed to complete the task. The children nodes
are presented in a linear list, making it easy to count. Many participants were ob-
served to use the depth slider in treemap to filter out unnecessary nodes to quickly
obtain the answer.

– (Finding the Largest Subtree) There was no statistical significance among the
three tools. This was a surprising result. We observed that although participants are
told that the nodes were sorted by size in CropCircles, users would spend time to
verify the sizes as if they do not trust the visual representation. Similar situation
is observed in SpaceTree. Users moused over all children to read the size of the
subtree reported in the tooltips when only the subtrees with dark preview triangles
should require closer inspection.

– (Finding a Deepest Node)We measured how successful users were at finding a
node that is at the deepest level of the given subtree. We performed analyses on
the error rate. CropCircles had significantly lower error rate than treemap, but the
difference between SpaceTree and CropCircles was not significant. There was also
no significant difference between SpaceTree and treemap.

– (Finding 3 Nodes with at Least 10 Immediate Descendents)Both CropCricles
and Treemap outperformed SpaceTree significantly, but there was no statistically
significant difference between the two. The nodes that CropCircles users reported
tend to be at the upper levels of the tree, as they took no additional zooming to
see. On the contrary, all nodes reported by Treemap users are the ones that contain
many leaf nodes, which are white, and are easy to see.

– (Finding 3 Top-Level Nodes that Root Subtrees of Depth of at Least 5)There
were no statistically significant differences among the three tools.

6 Discussion

Ignoring statistically insignificant results, CropCircles performed well against Treemap
and SpaceTree in topological tasks. CropCircles edged SpaceTree in finding 3 nodes
with at least 10 children, and was better than Treemap in finding a deepest node and
finding the bushiest child. Although there was no one task that CropCircles was bet-
ter than both of the other two tools, there was also no one topology task that Crop-
Circles performed unsatisfactorily. In this sense CropCircles is the most balanced of
the three tools in topology recognition tasks. By avoiding Treemap’s and SpaceTree’s
weaknesses, CropCircles is an appropriate visualization for class hierarchy. For ex-
ample, ontology modelers who wish to visually explore where an ontology is under-
modeled (characterized by subtrees that lack depth and bushiness in the inferred tree),

13

CropCircles would be a good choice. The results also suggest that ontology hierarchy
visualizers that use SpaceTree or treemap as the underlying technique should be aware
of their shortcomings and address them.

On the other hand, not all of our design decisions were validated. Although listing
children in a list that enables level-traversal allows users to remember the path they took
to a particular visited node, the list is inadequate to support label browsing. An option
to sort the labels alphabetically would have helped the users a great deal in node-finding
tasks. We were also not able to show that CropCircles can outperform the other tools
with statistical significance in finding the largest subtree, even though the subtrees are
ranked by size.

Our participants gave us valuable feedbacks on how to improve CropCircles in our
post experimental survey. Many mentioned better context support when details are fo-
cused. Several users suggested a more tightly integrated history with the visualization.
Almost all participants commented on the lack of support to sort node labels alphabeti-
cally. Information density in CropCircles is a concern, and several users have mentioned
the desire to see the space utilized better. These comments and our experimental results
are observed, and will be the main focus in the next step of our iterative design process.

7 Conclusions

We describe CropCircles and our requirements in designing a tool to visualize the topol-
ogy of OWL class hierarchy. While our design exploited several useful principles, not
all design decisions are helpful in completing the tasks in the experiments. However,
we are able to show that in topological tasks, CropCircles’s performance is comparable
to strengths of the two other tools, and is an improvement over their known weaknesses.
This result makes CropCircles an attractive alternative in viewing class hierarchies in
OWL.

8 Acknowledgments

This work was supported in part by grants from Fujitsu, Lockheed Martin, NTT Corp.,
Kevric Corp., SAIC, the National Science Foundation, the National Geospatial Intelli-
gence Agency, DARPA, US Army Research Laboratory, and NIST. Special thanks to
Jennifer Golbeck for her helpful comments and suggestions.

References

1. Eric H Baehrecke, Niem Dang, Ketan Babaria, and Ben Shneiderman. Visualization and
analysis of microarray and gene ontology data with treemaps.BMC Bioinformatics, 84(5),
2004.

2. Michael Balzer, Oliver Deussen, and Claus Lewerentz. Voronoi treemaps for the visualiza-
tion of software metrics.In Proceedings of the IEEE Symposium on Information Visualiza-
tion, 2005.

3. Benjamin B. Bederson. Quantum treemaps and bubblemaps for a zoomable image browser.
In Proceedings of User Interface Systems and Technology, pages 71–80, 2001.

14

4. Benjamin B. Bederson, Ben Shneiderman, and Martin Wattenberg. Ordered and quantum
treemaps: Making effective use of 2d space to display hierarchies.ACM Transations on
Graphics, 21(4):833–854, 2002.

5. Mark Bruls, Kees Huizing, and Jarke J. van Wijk. Squarified treemaps.Proc. IEEE Sympo-
sium on Information Visualization ’99, pages 284–291, 2000.

6. Ron Davidson and David Harel. Drawing graphs nicely using simulated annealing.ACM
Tran. on Graphics, 15:301–331, 1996.

7. Charles S. Davis.Statistical Methods for the Analysis of Repeated Measurements. Springer,
2002.

8. P. Eklund, N. Roberts, and S. P. Green. Ontorama: Browsing an rdf ontology using a
hyperbolic-like browser.In Proceedings of the 1st International Symposium on CuberWorlds
(CW2002), pages 405–411, 2002.

9. G. W. Furnas and J.Zacks. Multitrees: Enriching and reusing hierarchical structure.Pro-
ceedings of ACM CHI 1994 Conference on Human Factors in Computing Systems, 1994.

10. S. W. Greenhouse and S. Geisser. On methods in the analysis of profile data.Psychometrika,
29:95–112, 1959.

11. David Harel and Meir Sardas. Randomized graph drawing with heavy-duty preprocessing.
Journal of Visual Language and Computing, 6:233–253, 1995.

12. Liquin Jin and David C. Banks. Tennisviewer: A browser for competition trees.IEEE
Computer Graphics and Applications, 17(4):63–65, 1997.

13. Brian Johnson and Ben Shneiderman. Tree-maps: A space-filling approach to the visualiza-
tion of hierarchical information structures.In Proceedings of the 2nd International IEEE
Visualization Conference, pages 284–291, 1991.

14. A. Kalyanpur, B. Parsia, and J. Hendler. A tool for working with web ontologies.Int. J. on
Semantic Web and Info. Syst., 1(1), 2004.

15. J. Lamping, R. Rao, and P. Pirolli. A focus+context technique based on hyperbolic geometry
for visualizing large hierarchies.Conference Proceedings on Human factors in computing
systems, pages 401–408, 1995.

16. Thorsten Liebig and Olaf Noppens. OntoTrack: Combining browsing and editing with rea-
soning and explaining for OWL Lite ontologies.In Proceedings of the 3rd International
International Semantic Web Conference, 2004.

17. Natalya F. Noy, Michael Sintek, Stefan Decker, Monica Crubézy, Ray W. Fergerson, and
Mark A. Musen. Creating semantic web content with protéǵe-2000. IEEE Intelligent Sys-
tems, pages 60–71, 2000.

18. Catherine Plaisant, Jesse Grosjean, and Benjamin B. Bederson. Spacetree: Supporting ex-
ploration in large node link tree, design evolution and empirical evaluation.In Proceedings
of IEEE Symposium on Information Visualization, pages 57–64, 2002.

19. M.-A. D. Storey, M. A. Musen, J. Silva, C. Best, N. Ernst, R. Fergerson, and N. F. Noy. Jam-
balaya: Interactive visualization to enhance ontology authoring and knowledge acquisition
in Prot́eǵe. Workshop on Interactive Tools for Knowledge Capture (K-CAP-2001), 2001.

20. Weixin Wang, Hui Wang, Guozhong Dai, and Hongan Wang. Visualization of large hierar-
chical data by circle packing.In Proceedings of SIGCHI Conference on Human Factors in
Computing Systems (CHI’06), pages 517–520, 2006.

